甘肃机械设备网

当前位置: 首页 >> 机械设备厂家

AI企业的有效盈利模式是什么人工智能有哪些坎儿

2022年04月28日 甘肃机械设备网

AI企业的有效盈利模式是什么 人工智能有哪些坎儿?

11月7日,在Tech Crunch创新峰会上,微软小娜研发总监微软AI杜奕瑾、地平线联合创始人兼软件副总裁地平线机器人杨铭、商汤科技联合创始人兼副总裁商汤科技徐冰举行了一场以“人工智能”为主题的圆桌对话,展开了一场人工智能将如何颠覆我们的生活的探讨。

人工智能有哪些坎儿?

微软AI杜奕瑾:你可以看到微软在人工智能的投资是非常的多,像刚才提到比如说像希瑞的理解有时候可能有点卡,它牵扯的层面非常多,包括大数据的分析,包括语意的理解,包括你有没有对的东西。以微软来讲,我们微软在人工智能大概是哪个层面。我们在9月底的时候,微软在硬件的部分有一个(英语),就是在人工智能硬件我们可以在很快的时间去(英语)AI的计算,就是从CPU、GPU。

再就是我们去支持我们大数据的分析部分,我们当然有我们的团队在后面,我们给第三方有我们的(英语),因为没有(英语)你是没有办法理解,没办法知道这个世界发生什么事情。我们有这个(英语)才可以知道,像你刚才讲的,当我讲一件事情,希瑞怎么知道,或者微软小娜怎么知道,微软小娜它会知道这个世界你身边有什么东西,你有什么朋友,你在说这句话的时候,他才有办法知道你在说什么。这就牵扯到我们要有很全面的数据收集。

我们微软有很多开放的平台,其实最近大家可以看到清洁在语音辨识,我们语音辨识比人去听还来得清楚,我们有一个CNTK,它在后面支持我们做(英语)这个部分。我们做语音辨识,我们同样来做图像处理,我们其实微软可以在影像识别,可以达到比人的眼睛识别还来得精准。

当我们有这么多的识别之后,我们把它变成一个产品,我们微软有很多的认知服务系统,我们的语音辨识、语音理解、影像识别,就会在我们内部其实是已经在广泛的使用。对外我们去开放的话,我们通过我们微软的(英语),比如说第三方可以有自己的语音辨识,语音理解。

再往上的话,就是微软小娜,它有几个寓言,我们未来最自然的(英语)。对未来来讲,我们要着力发展的就是,不是在发展APP,其实以后人机交互的体验,主要就是会人跟一个(英语)做交互。我们未来有一个人工助理,你刚刚问为什么说有些体验,当用户在用克他娜(音)的时候会觉得比较顺,就是有这些技术。

地平线机器人杨铭:实际上最近人工智能由于深度学习,深度神经网络发展有很大的技术突破和提高,但是基本上还是统计学习的范畴,是从数据中总结规律,实际对于问题的理解和推理,深刻的分析还是有所欠缺的,这是一个原因,技术还没有完全解决所有的问题。

另外从技术角度来说,它对长时间的记忆,你能够长时间积累知识,长时间的理解知识,这方面还是有欠缺的,这是两个技术上的问题,还需要改进的,或者做得更好的地方。

商汤科技徐冰:非常认同两位的分享。现在我们看到深度学习其实处于一种爆发阶段,在这个阶段其实我们这些做研究的中间面临一个很大的问题,就是你在遇到一些未经突破和解决的时候,你看不到市场上,或者行业里面已经有的解决方案,这些东西都依赖于团队本身的创新能力和原创能力来解决这些问题。

像我们最早做人脸识别2014年的时候,当时涉及到一个计算能力的问题,我们当时是租用了深圳的超算中心,租了一个月的时间,才跑出来一次结果。这是在2014年,也就是两年之前,我们看到做深度学习和人工智能一个很大的瓶颈。

后来GPU的发展,以及业务来说,我们积累了比较巨量的数据,数据层面其实也一样,这个算法本身在实际的应用场景里面好不好用,很大程度上也是关系到你有没有在实场景里面获取大量的数据,并且在大量的数据上进行学习和训练。

在这个上面,当你在做严肃的深度学习训练的时候,你发现比如说现在商汤科技积累的是一亿个个体的人脸照片,超过8亿张人脸数据,这个规模之下,你会发现没有任何的超算集群,或者底层算法平台可以支撑这个规模的深度学习训练。

当这个问题出现的时候,又要想办法解决,因此当我们真正把这些问题解决,发现深度学习可以在亿级别的数据上进行学习训练的时候,这个算法的性能又会得到一个非常巨大的提升。所以这个环节一定是说一步一步往前走,并且这个过程中其实也是依赖于团队本身的创新能力和原创能力,这就是解决问题的点。

1234下一页>

colorkey

黑魔方粉底液

空气唇釉